The 2D Hotelling filter - a quantitative noise-reducing principal-component filter for dynamic PET data, with applications in patient dose reduction
نویسندگان
چکیده
BACKGROUND In this paper we apply the principal-component analysis filter (Hotelling filter) to reduce noise from dynamic positron-emission tomography (PET) patient data, for a number of different radio-tracer molecules. We furthermore show how preprocessing images with this filter improves parametric images created from such dynamic sequence.We use zero-mean unit variance normalization, prior to performing a Hotelling filter on the slices of a dynamic time-series. The Scree-plot technique was used to determine which principal components to be rejected in the filter process. This filter was applied to [11C]-acetate on heart and head-neck tumors, [18F]-FDG on liver tumors and brain, and [11C]-Raclopride on brain. Simulations of blood and tissue regions with noise properties matched to real PET data, was used to analyze how quantitation and resolution is affected by the Hotelling filter. Summing varying parts of a 90-frame [18F]-FDG brain scan, we created 9-frame dynamic scans with image statistics comparable to 20 MBq, 60 MBq and 200 MBq injected activity. Hotelling filter performed on slices (2D) and on volumes (3D) were compared. RESULTS The 2D Hotelling filter reduces noise in the tissue uptake drastically, so that it becomes simple to manually pick out regions-of-interest from noisy data. 2D Hotelling filter introduces less bias than 3D Hotelling filter in focal Raclopride uptake. Simulations show that the Hotelling filter is sensitive to typical blood peak in PET prior to tissue uptake have commenced, introducing a negative bias in early tissue uptake. Quantitation on real dynamic data is reliable. Two examples clearly show that pre-filtering the dynamic sequence with the Hotelling filter prior to Patlak-slope calculations gives clearly improved parametric image quality. We also show that a dramatic dose reduction can be achieved for Patlak slope images without changing image quality or quantitation. CONCLUSIONS The 2D Hotelling-filtering of dynamic PET data is a computer-efficient method that gives visually improved differentiation of different tissues, which we have observed improve manual or automated region-of-interest delineation of dynamic data. Parametric Patlak images on Hotelling-filtered data display improved clarity, compared to non-filtered Patlak slope images without measurable loss of quantitation, and allow a dramatic decrease in patient injected dose.
منابع مشابه
Adaptive Optimum Notch Filter for Periodic Noise Reduction in Digital Images
Periodic noises are unwished and spurious signals that create repetitive pattern on images and decreased the visual quality. Firstly, this paper investigates various methods for reducing the effects of the periodic noise in digital images. Then an adaptive optimum notch filter is proposed. In the proposed method, the regions of noise frequencies are determined by analyzing the spectral of noisy...
متن کاملIMPLEMENTATION OF EXTENDED KALMAN FILTER TO REDUCE NON CYCLO-STATIONARY NOISE IN AERIAL GAMMA RAY SURVEY
Gamma-ray detection has an important role in the enhancement the nuclear safety and provides a proper environment for applications of nuclear radiation. To reduce the risk of exposure, aerial gamma survey is commonly used as an advantage of the distance between the detection system and the radiation sources. One of the most important issues in aerial gamma survey is the detection noise. Various...
متن کاملA Novel Frequency Domain Linearly Constrained Minimum Variance Filter for Speech Enhancement
A reliable speech enhancement method is important for speech applications as a pre-processing step to improve their overall performance. In this paper, we propose a novel frequency domain method for single channel speech enhancement. Conventional frequency domain methods usually neglect the correlation between neighboring time-frequency components of the signals. In the proposed method, we take...
متن کاملComparisons of Hounsfield Unit Linearity between Images Reconstructed using an Adaptive Iterative Dose Reduction (AIDR) and a Filter Back-Projection (FBP) Techniques
Background: The HU linearity is an essential parameter in a quantitative imaging and the treatment planning systems of radiotherapy. Objective: This study aims to evaluate the linearity of Hounsfield unit (HU) in applying the adaptive iterative dose reduction (AIDR) on CT scanner and its comparison to the filtered back-projection (FBP).Material and Methods: In this experimental phan...
متن کاملEstimate bowtie filter shape in PET/CT scan with TLD
Introduction: The CT machine utilizes a bowtie filter to shape the X-ray beam and remove lower energy photons. Configuration of this bowtie filter is complex and its geometry is often not available in detail. It causes the CT dose index (CTDI) be with the different values in measurement versus Monte Carlo simulation studies and other analytical calculations. It is important esp...
متن کامل